Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
NEJM Evidence ; 2(3):1-9, 2023.
Article in English | CINAHL | ID: covidwho-2259507

ABSTRACT

Background: Environmental surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through wastewater has become a useful tool for population-level surveillance. Built environment sampling may provide a more spatially refined approach for surveillance in congregate living settings. Methods: We conducted a prospective study in 10 long-term care homes (LTCHs) between September 2021 and November 2022. Floor surfaces were sampled weekly at multiple locations within each building and analyzed for the presence of SARS-CoV-2 using quantitative reverse transcriptase polymerase chain reaction. The primary outcome was the presence of a coronavirus disease 2019 (Covid-19) outbreak in the week that floor sampling was performed. Results: Over the 14-month study period, we collected 4895 swabs at 10 LTCHs. During the study period, 23 Covid-19 outbreaks occurred with 119 cumulative weeks under outbreak. During outbreak periods, the proportion of floor swabs that were positive for SARS-CoV-2 was 54.3% (95% confidence interval [CI], 52 to 56.6), and during non-outbreak periods it was 22.3% (95% CI, 20.9 to 23.8). Using the proportion of floor swabs positive for SARS-CoV-2 to predict Covid-19 outbreak status in a given week, the area under the receiver-operating characteristic curve was 0.84 (95% CI, 0.78 to 0.9). Among 10 LTCHs with an outbreak and swabs performed in the prior week, eight had positive floor swabs exceeding 10% at least 5 days before outbreak identification. For seven of these eight LTCHs, positivity of floor swabs exceeded 10% more than 10 days before the outbreak was identified. Conclusions: Detection of SARS-CoV-2 on floors is strongly associated with Covid-19 outbreaks in LTCHs. These data suggest a potential role for floor sampling in improving early outbreak identification. Wastewater testing has proven to be a valuable tool for forecasting Covid-19 outbreaks. Fralick et al. now report that swabbing of surfaces (i.e., floors) for SARS-CoV-2 may provide a similar benefit for predicting outbreaks in long-term care homes.

2.
PLoS One ; 18(3): e0282489, 2023.
Article in English | MEDLINE | ID: covidwho-2259506

ABSTRACT

BACKGROUND: SARS-CoV-2 can be detected from the built environment (e.g., floors), but it is unknown how the viral burden surrounding an infected patient changes over space and time. Characterizing these data can help advance our understanding and interpretation of surface swabs from the built environment. METHODS: We conducted a prospective study at two hospitals in Ontario, Canada between January 19, 2022 and February 11, 2022. We performed serial floor sampling for SARS-CoV-2 in rooms of patients newly hospitalized with COVID-19 in the past 48 hours. We sampled the floor twice daily until the occupant moved to another room, was discharged, or 96 hours had elapsed. Floor sampling locations included 1 metre (m) from the hospital bed, 2 m from the hospital bed, and at the room's threshold to the hallway (typically 3 to 5 m from the hospital bed). The samples were analyzed for the presence of SARS-CoV-2 using quantitative reverse transcriptase polymerase chain reaction (RT-qPCR). We calculated the sensitivity of detecting SARS-CoV-2 in a patient with COVID-19, and we evaluated how the percentage of positive swabs and the cycle threshold of the swabs changed over time. We also compared the cycle threshold between the two hospitals. RESULTS: Over the 6-week study period we collected 164 floor swabs from the rooms of 13 patients. The overall percentage of swabs positive for SARS-CoV-2 was 93% and the median cycle threshold was 33.4 (interquartile range [IQR]: 30.8, 37.2). On day 0 of swabbing the percentage of swabs positive for SARS-CoV-2 was 88% and the median cycle threshold was 33.6 (IQR: 31.8, 38.2) compared to swabs performed on day 2 or later where the percentage of swabs positive for SARS-CoV-2 was 98% and the cycle threshold was 33.2 (IQR: 30.6, 35.6). We found that viral detection did not change with increasing time (since the first sample collection) over the sampling period, Odds Ratio (OR) 1.65 per day (95% CI 0.68, 4.02; p = 0.27). Similarly, viral detection did not change with increasing distance from the patient's bed (1 m, 2 m, or 3 m), OR 0.85 per metre (95% CI 0.38, 1.88; p = 0.69). The cycle threshold was lower (i.e., more virus) in The Ottawa Hospital (median quantification cycle [Cq] 30.8) where floors were cleaned once daily compared to the Toronto hospital (median Cq 37.2) where floors were cleaned twice daily. CONCLUSIONS: We were able to detect SARS-CoV-2 on the floors in rooms of patients with COVID-19. The viral burden did not vary over time or by distance from the patient's bed. These results suggest floor swabbing for the detection of SARS-CoV-2 in a built environment such as a hospital room is both accurate and robust to variation in sampling location and duration of occupancy.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Prospective Studies , Patients' Rooms , Built Environment , Ontario/epidemiology
3.
Sci Rep ; 10(1): 14031, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-724696

ABSTRACT

The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was declared on March 11, 2020 by the World Health Organization. As of the 31st of May, 2020, there have been more than 6 million COVID-19 cases diagnosed worldwide and over 370,000 deaths, according to Johns Hopkins. Thousands of SARS-CoV-2 strains have been sequenced to date, providing a valuable opportunity to investigate the evolution of the virus on a global scale. We performed a phylogenetic analysis of over 1,225 SARS-CoV-2 genomes spanning from late December 2019 to mid-March 2020. We identified a missense mutation, D614G, in the spike protein of SARS-CoV-2, which has emerged as a predominant clade in Europe (954 of 1,449 (66%) sequences) and is spreading worldwide (1,237 of 2,795 (44%) sequences). Molecular dating analysis estimated the emergence of this clade around mid-to-late January (10-25 January) 2020. We also applied structural bioinformatics to assess the potential impact of D614G on the virulence and epidemiology of SARS-CoV-2. In silico analyses on the spike protein structure suggests that the mutation is most likely neutral to protein function as it relates to its interaction with the human ACE2 receptor. The lack of clinical metadata available prevented our investigation of association between viral clade and disease severity phenotype. Future work that can leverage clinical outcome data with both viral and human genomic diversity is needed to monitor the pandemic.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/epidemiology , Evolution, Molecular , Pneumonia, Viral/epidemiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2 , Base Sequence , Betacoronavirus/pathogenicity , COVID-19 , Child , Child, Preschool , Computer Simulation , Coronavirus Infections/virology , Female , Genome, Viral/genetics , Humans , Infant , Male , Middle Aged , Mutation, Missense , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/virology , Protein Conformation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virulence/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL